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ABSTRACT

Highly accurate far field computational boundary conditions for inviscid,

two-dimensional isentropic duct flow problems are developed from analytic

solutions of the linearized, second-order Euler equations. The Euler

equations are linearized about a constant pressure, rectilinear flow

condition. The boundary procedure can be used with any numerical Euler

solution method and allows computational boundaries to be located extremely

close to the nonlinear region of interest. Numerical results are presented

which show that the boundary conditions and far field analytic solutions

provide a smooth transition across a computational boundary to the true far

field conditions at infinity. The cost of upgrading first-order boundary

conditions to second-order is slight.



I. INTRODUCTION

Numerical solution procedures for nonlinear fluid dynamic equations

usually use one or more artificial computational boundaries located at some

distance from the primary region of interest in order to limit the physical

domain to finite size. If the flow crossing such a boundary (either inflow or

outflow) is subsonic, then some type of computational boundary conditions must

be imposed which simulate the influence of the true far field conditions at

infinity. These boundary conditions must be such that waves crossing the

boundary do not produce erroneous reflections back into the computational

field to degrade the calculations. It is generally acknowledged that simply

imposing free stream conditions (or conditions at infinity) at computational

boundaries is usually inappropriate because of the spurious reflections back

into the computational domain which result. Standard practice has consisted

of locating the boundaries quite far from the region of interest in an attempt

to simplify the boundary condition models and minimize any effects of incon-

sistent modeling. The net effect is a significant increase in the number of

grid points required for an accurate flowfield calculation.

A boundary modeling procedure for two-dimensional internal flows was

presented in Reference I which alleviates the difficulties mentioned above and

also allows the computational boundaries to be located much closer to the

nonlinear region of interest. The procedure is limited to steady, inviscid

flow, although the flow can be rotational. It represents a logical first-

order extension of the so-called characteristic (or zero-order) boundary

conditions commonly used with inviscid numerical solution methods. Extension

to axisymmetric or three-dimensional flows is straightforward.

The analysis presented here extends the first-order analysis to second

order for isentropic duct flow and provides a logical extension, in an

asymptotic sense, of the first-order analysis. It also illustrates a consis-

tent procedure for coupling linearized analytic solutions with nonlinear

numerical solutions by means of computational boundary conditions. The

greater accuracy of the second-order boundary procedure allows the computa-

tional boundaries to be placed even closer to the nonlinear computational
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region thereby further redu(ing the number of grid points needed for the

numerical solution. Even though the analysis and boundary conditions derived

from it are limited to isentropic flow, many non-isentropic duct flow problems

have isentropic flow crossing the inflow boundary at which these second-order

boundary conditions can be imposed.

The present analysis is based on the Riemann variable formulation of the

Euler equations given in Reference 2 simplified by the isentropic assumption.

This represents a natural starting point because the characteristic (or

zero-order) boundary conditions mentioned above are expressed in terms of

Riemann variables. The equations are linearized about a constant pressure,

rectilinear flow condition, which truly represents conditions at infinity.

These linearized equations are assumed applicable in the far field region

beyond a computational boundary. Within the nonlinear computational domain,

strong entropy-producing (i.e., rotational) effects can exist which create

variations in density, velocity, etc. in the downstream far field in the

streamline-normal direction which are not necessarily small perturbations.

Such variations were modeled in the analysis presented in Reference 1.

However, because of the two-level perturbation procedure and subsequent

approximate solution method used in that analysis, inclusion of entropy

effects in the second-order analysis does not seem justified. As mentioned

above, however, the second-order isentropic analysis is still applicable to

non-isentropic problems having isentropic inflow conditions.

The first-order linearized equations analyzed in Reference I are homo-

geneous and were solved using separation of variables and Fourier analysis.

The second-order equations treated herein are non-homogeneous, but can also be

solved by the same techniques. These equations are written in different forms

for the upstream and downstream far field regions because the downstream flow

is driven by the distribution of flow angle on the computational boundary

while the upstream flow is driven by the distribution of Riemann variable

associated with upstream propagating waves. The assumption is made that the

far field flow is confined by parallel walls, which is not restrictive for

duct flow problems.
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The first- and second-)rder solutions are coupled to the nonlinear

numerical solution to provide a smooth transition across the computational

boundary to the true far field conditions at infinity. The coupling is

accomplished by the bounuary conditions. The first-order boundary conditions

provide distributions of flow quantities to be imposed along the boundary, not

constant conditions. The second-order boundary conditions provide high

accuracy corrections to the first-order distributions. The first- and

second-order boundary conditions represent logical asymptotic extensions of

the zero-order (or characteristic) conditions. Furthermore, the boundary

analysis can be coupled with any inviscid numerical solution method.

Numerical results are presented for a duct/nozzle configuration. Results

obtained using the second-order boundary conditions are compared with those

using zero- and first-order conditions. An extremely fine grid was used for

the numerical solution in order to accurately assess the improvement produced

by the second-order analysis. It was found that the computational boundaries

could be located very close when the second-order boundary conditions were

used with no loss in numerical solution accuracy. The reduced size of the

computational field further reduced the number of grid points needed for the

numerical solution. The additional computational effort required to upgrade

the boundary conditions to second-order is very slight. The benefits of the

improved boundary conditions are also achieved when a coarser grid is used.

3



I. SECOND-ORDER PERIURBATION EQUATIONS

The system of two-dimensional, steady, linearized Euler equations which

describe second-order perturbations from a constant pressure state are derived

in this section. For reasons outlined in Reference 1, the Riemann variable

formulation of Reference 2 will again be used because of its close

relationship with characteristic (or zero-order) boundary conditions commonly

used in numerical solution of the nonlinear Euler equations. As explained in

the previous section, the analysis will be limited to isentropic flow in ducts

having parallel walls.

The two-dimensional, isentropic form of the Euler equations is

(Reference 2)

3t + (q + a) as q n(a
at as an

(q - a) + qa ae (2)
at as an

-a + q s aq an (3)

Velocity magnitude and speed of sound are denoted by q and a, respectively,

and P is the logarithm of pressure. The Riemann variables Q and R are defined

as

Q =q + - a

(4)

R q 2-1 a

The flow angle is e, time is denoted by t, and local distances along and

normal to the streamline direction are denoted by s and n, respectively.
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For steady flow the analysis can be greatly simplified by defining a new

dependent variable

T = Q - R (5)

and replacing equations (1) and (2) by

(M2 - 1) H- + 2 q M ae = 0 (6)
as an

a2 + q2 - (7)a2

The local Mach number is denoted by M. Equation (6) is obtained by

subtracting equations (1) and (2). Equation (7) is obtained by adding

equations (1) and (2) and integrating. The constant of integration, which is

proportional to stagnation temperature, can be set to unity by proper choice

of non-dimensionalizing quantities. The simplified form of the steady Euler

equations is then

(M2 - 1) ! + 2 q M 0 (8)as an

M2  + 2 Lr 0 (9)
as 1-1 Tan

a2+ - 1 q2 = 1 (10)

In regions of the flowfield where nonlinear effects are weak, the flow

can be treated as a perturbation to a constant pressure, rectilinear flow.

Such regions occur near and beyond far field computational boundaries. The

dependent variables in equations (8) and (9) can then be expanded in

asymptotic series

T = T. + TI + T2 +
(11)

o = 0e + 81 + 82 + ..
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The flow direction at infinity is assumed constant and denoted by 0.; T is

also constant because the flow is assumed isentropic. The perturbation

quantities Ti and 9i vanish at infinity. For duct flow between parallel

walls, the far field flow angle e. can be assumed zero.

Consistent with the expansions (11), spatial derivatives in equations (8)

and (9) can be approximated by

+ a 02 a
-I + - 1 + 02 .

(12)
a a - a 1 e 2 a _ a
an = a 2 1 ay ax

where x and y are reference Cartesian coordinates and e and 82 are measured

from the x axis which is aligned with the axis of the duct (see Figure 1).

If expansions (11) and (12) are introduced into equations (8) and (9),

the resulting first-order perturbed Euler equations are

2 xl - 2 q.M - =0 (13)
ax ay

aoI  aT1
2 qmM, _- + = (14)

ax ay

The second-order equations are

B aT2 _0 3 2
B2 - -2 q M e - q. M 81

ax ay wax (15)

+ 2 (1 + 1- M2 + Y-! M4) T2]
2q 2 M_0

M3
a62  aT2  a M0  2 1 3-1 2)2 (16)

2 a ay- = q0  y - 2q-- 91 (1 + () TI]
M6



Velocity and Mach number at infinity are constant and denoted by q. and M.,

respectively. The parametet B is defined by

(17)

Procedures for calculating far field quantities such as q. and M. are outlined

in Reference 1.

Asymptotic expansions of the Riemann variables Q and R can also be

defined as

Q = Q- + Q1 + Q2 + "

(18)

R = R. + RI + R2 + ...

Using the definition (5) and the expansion (11) for T, it follows that

T.= Q. -R

T= Q- R1 (19)

T2 = Q2 -R2

Introducing the expansions (11) and (18) into the algebraic equation (10)

gives the first- and second-order relationships

(I+M.) QI - (1-M.) R1 = 0 (20)

M'. 2R =o(l
(I+M.) Q2 - (l-M.) R2 + I(M)2  + t[ M!) R (21)

These relations will be used later in Section IV where the boundary conditions

are derived.
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Equations (20) and (21) can also be used to express the perturbation

equations in different dependent variables. One such form, which will be

convenient later in Sections III and IV, uses RI and R2 in place of TI and T2 .

In terms of these variables, the first-order equations are

(1-Ml) + q_, - 0 (22)
ax - ay

q. (l+M.) 1 ay = 0 (23)

The second-order equations are

3R2  a92  1 a 2 2 1 ( 1 ~ M, ) Rj 2 4)( a-M.) + q. = 2 q ax+)q (+ + 2 M) ' (24)
(1+M)qw,

q . ae R2  1 aM 2[q0x(ay - 2 q ) ay _--

1 ( + 2M0  + 2 3 2 (25)
l")2 2l Z. L M.) RI]

(1+Mj, 2q

The second-order equations using either choice of dependent variables consist

of a coupled pair of non-homogeneous equations whose right hand sides (RHS)

are functions of the first-order solution variables.
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III. S,._UTION OF SECOND-ORDER EQUATIONS

Solutions of the second-order perturbation equations for duct flows are

developed in this section. The first-order duct flow analysis of Reference I

showed that the behavior of the flow in the downstream far field is governed

by the distribution of flow angle e on the downstream computational boundary.

This distribution is obtained from the nonlinear numerical solution. Also,

the first-order downstream boundary conditions for the computational domain

were expressed in terms of the perturbation variable T1 . Therefore, the

second-order equations (15) and (16) are appropriate for analyzing the down-

stream region.

In the upstream far field region, the flow behavior is governed by the

distribution of the Riemann variable R on the upstream computational boundary.

This distribution is obtained from the nonlinear numerical solution. The

first-order upstream boundary conditions for the computational domain were

expressed in terms of the perturbation variables 91 and QI. Therefore, the

second-order perturbation equations (21), (24) and (25) are appropriate for

analyzing the upstream region.

Downstream Region

The second-order equations (15) and (16) can be combined into the single

equation

e2 + ay 2 
- 2 [2 2 + qcI (I + M2 2 (26)

3 x--2- ay2 axay [el 4qW Z6

From Reference 1, the solution of the first-order system (13) and (14) for

duct flows can be expressed as



01 = E An sin nry e-n~/B
1

(27)
-2qM ,

T! :E An cos niy e1

where An represents the Fourier coefficients of the distribution of flow angle

e on the downstream computational boundary located at x=O. The width of the
duct has been taken as unity. Note that the solution (27) for T! does not

include a zero-mode term (i.e., AO) which is related to the mean value of the

perturbation T-T. at the boundary. It was pointed out in Reference 1 that

such a term is a second-order effect. This will be verified below. Using the

first-order solution in the RHS, equation (26) becomes

2 3 22 " 2M2 W

+ jy2 = -2jBWE, Am An [(2 + 2 M ) (m2-n2 ) sin(m-n)nySax2  ay2  2B3 11I

(28)

+ 2±1 M2 (m+n)2 sin(m+n),y] e
-(m+n)1nx/a

2 w

To satisfy the duct wall boundary conditions of zero flow angle, a

particular solution of equation (28) must have the form

IT2M! ,

eL = FF Hmn(X ) sin(m±n)ry (29)a6 I I

This results in the two component ordinary differential equations (depending

on choice of sign) for each value of m and n

62 Hmn - 22(m+n)2 Hmn = 0I M2 (m+n)2 Am An e- (m+n)rx/B (30)

82 HMn - n2(m-n)2 Hmn = (2 + -3 M2) (m2-n2) Am An e-(m+n) nx/8 (31)

10



The respective solutions of these equations are

Hmn =- 4 ! (m+n) Am An x e(m+n)x (32)mn 4 itB

Hmn = (2 + 1- M!) m2-n2 Am An e(m+n)nx/a (33)

Referring to the first-order solution (27), the solution for 8I can be

used to exactly represent the computational boundary distribution of flow

angle obtained from the nonlinear numerical solution. This requires that e2
vanish at x=O. This can be enforced by adding a solution of the homogeneous

portion of equation (31) to the solution (33). The full second-order solution

for e in the downstream region is then

8 = An sin nny e"" /' + kI x E E (m+n) Am An sin(m+n)ny e
11 1

(34)
+ 2  m2-n2 -mnwx8 -mnx/

+ k mn Am An sin(m-n)ny [e- (m+n ) x/a - e Im-nIx/a]IImn

where

4
- 8 ia

M3 (35)

k2 t i_ (2 + 2-3 M2

The solution for T2 can be obtained from equation (15) using the solution

(29) for 82 which was determined above. After integrating, the full

second-order solution for T in the downstream region is

11



T , 2q MaF, An cos nry e-n"X/B

+ KI EE Am An cos(m+n)vy [I + (mn)x] e-

I I

(36)

K2  m A n Ln cos(m-n)ny [(m-n) 2 e - (m+n)x/ m2-n2 e -imnx/B]
1 1 m n

+ E Am An [K3 cos(m-n)ny + K4 cos(m+n)ry] e(m+n)mx/B

The coefficients are defined by

KI ]y+! q-,Ma

K2  I q M (2 + 2L Ma,

4- 4 2

(37)
q (I + +14 M2 + .-3 M4 )

K3  - B4- ( 4 +4

9M(1+ -3 Ma + 1± M4 )
K4 - 4- 4I 4- +

The solution (36) contains longitudinally decaying plane waves

corresponding to m=n. They are represented by

- 0 2 -2nrx/O
T2 K3 E An e

(38)
=-B-I+qMM. 1+1 M2 + - M _ M4 )  A2 e- 2nnx/6

At x=O the quantity T2 represents the mean value of the perturbation T-T. at

the boundary.

12



Upstream Region

The second-order equations (24) and (25) can be combined into the single

equation

2L2R 2 + 2R2  1 D2  2 2 1
=2  2 q. (a (M. (1+M.) 91 (1+):L '

(39)

2 1M 2 1 ()
y2 -M,1 - (1+M (1 2 + 2M + 1-2)

From Reference 1, the solution of the first-order system (22) and (23) can be

expressed as

R= Cn cos nry enlrx/8
1

(40)

= -8 Cn sin nny e 
n x/B81 q.(1+M) 1i

where Cn represents the Fourier coefficients of the distribution of the

Riemann variable perturbation R-R. on the upstream computational boundary

located at x=O. As explained in Reference 1, the mean value of R-R. on the

boundary represented by the zero-mode coefficient CO is a second-order effect

and is not included in the first-order solution (40). Using the first-order

solution in the RHS, equation (39) becomes

g2R2  a2R2  __72 1_( ) M2 M8-T +  = [(I + M. + + +

E Cm Cn (m+n)2 cos(m-n)my

1 1 (41)

2( + M. 3M+ 2 ) O 2 Cm Cn (m-n)2 cos(m-n)ry

+ ( 4) M E E Cm Cn (m+n)2 cos(m+n)ey] e(m+n )rx/a

13



Following the solutioi procedure used for the downstream region, a

particular solution of equation (41) must have the form

2= - F E Gmn(X) cos(m±n)ny (42)
4B2q®(1+M) I I

This results in the two component ordinary differential equations (depending

on choice of sign) for each value of m and n

B2 GM~n - n2 (m+n)2 Gmn = (I+M) M 4 (m+n)2 Cm Cn e(m+n)rx/a (43)

B2 GM~n - i2 (m-n)2 Gmn = [bi(m+n) 2 + b2 (m-n)
2] Cm Cn e(m+n)ix/B (44)

The coefficients bI and b2 are defined by

bl I + M® + MW + 2 M3 + - D 4

(45)
32 + A M2 13M

b2  (1 + M - .!-

The respective solutions of these equations are

G =YI_ M! (m+n) Cm Cn x e 
(m + n )n x/8 (46)

mn 12 M-(B

Gmn = + b2  n)2 Cm Cn e(m+n)rx/B (47)Gn=4R 2 bI (n b2]m n

Referring to the first-order solution (40), with the exception of the

mean value, the solution for RI can be used to exactly represent the

computational boundary distribution of R-R. obtained from the nonlinear

numerical solution. This requires that all Fourier modes of R2 except the

zero mode vanish at x=O. This can be enforced by adding a solution of the

homogeneous portion of equation (44). The solution for R2 in the upstream

region is then

14



(m~n~x/a 2 2nnx/a
R2 = K5 x E E (m+n) Cm Cn cos(m+n)ry e( mn)fX/3 + 4K6  n e11 1

+ K6  (m+n ) Cm Cn cos(m-n)%y (e(m+n)wx/a - eI m -nlhx/B] (48)
mn

O~n

+ K7 mn Cm Cn cos(m-n)ny [e(m+n)x/o -e m -n jnx/8]

where

4
K5  8B3q(1+M.)

1 (1 + M + M2) (49)K6 1602q. 1+M

K7  1 ( ) (1 + M. - 3M! + -2 - 3 M4)

The corresponding solution for Q2 can be obtained from the second-order

relation (21) as

-M'_ My-1 2 2
Q2 = j+- R- (I + 1 M.) RI (50)

q0 (+M.)

The solution for 62 can be obtained from equation (24) using the solution

(48) for R2 which was determined above. After integrating, the full

second-order solution for 9 in the upstream region is

15



q0 (1+Ml2) 1 Cn sin nry e + k3 E E Cm Cn sin(m+n)ny e(m+n) x/8! 11

+ k4 x E (m+n) Cm Cn sin(m+n)ny e
11

(51)

02 2 mn bnJ.Im-ninx/a (m+n)rx/o
+ k - Cm Cn sin(m-n)y [(m+n)m-n e m - (m-n) e m ]

m n
+k6rn-n

+ E mn Cm Cn sin(m-n)ny [(m+n) e(m+n)r x/8 -m-ni em-nrx/3B1 mn

The coefficients are defined by

k3~ ~ -B IM) [B2 (I + Mm) + 1±1 M31

k3E 21 [2 (1

8 02q (I+M.)2

(52)
k5  2 (1 + MW 2  P3

16aq(l+M )

1 ( 2 + y M 3 - I3 M! )
k6  16eq2(14M)2 2 m2

The solution (48) also contains longitudinally decaying plane waves

corresponding to m=n. They are represented by

R2  4 K6 E Cn eznx/8

(53)
1 (1 + M + 14 M3) C e2 n wx/ B

16



From equatiot. (50) the corresponding plane waves for Q are

(1 2~ 1- 3 + ):3 M!) 'wC2 nwx/8 54
Q2=4q.(1+.) 3 0 . -2 M; 2 Ene(4

At x=O the quantities Q2 and R2 represent the mean values of the perturbations

Q-Q. and R-R. at the boundary, respectively. Note that the mean value of the

R perturbation is predicted by the analysis and not determined directly from

the numerical solution as are the other Fourier modes.

17



IV. BOUNDARY CONDITIONS DEVELOPMENT

Second-order boundary conditions for duct flows are developed in this

section based on the linearized Euler solutions obtained in the previous

section. They represent a logical extension of the first-order boundary

conditions developed in Reference 1.

Downstream Boundary

The downstream boundary conditions are derived from the definition (5)

rewritten as

R = Q - T (55)

Using the solution (36) for T and applying the relation (55) at the boundary

(assumed located at x=O), the distribution of R on the boundary (i.e., the

boundary conditions) is calculated according to

4 2q.M,
Rb = Qnum - a, + E An cos nny

1
w w

+ (K1 + K4 ) E E Am An cos(m+n)ny (56)
11

+ Y E [K2 (m-n)2 - 1m2-n21 + K3] Am An cos(m-n)wy

The boundary distribution of Q obtained from the nonlinear numerical solution

is denoted by Qnum. The zero Fourier mode corresponding to m=n in-this

expression is proportional to the coefficient K3 . It represents the mean

value of the R perturbation at the boundary and is clearly a second-order

effect.
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Upstream Boundary

The upstream boundary conditions are derived by applying the perturbation

relation (50) and the solutions (48) and (51) at the boundary (assumed located

at x=O). From these relations the distributions of Q and e on the boundary

(i.e., the boundary conditions) are calculated according to

Qb = Q- + + Cn cos nny + 4 K6 E Cn]
1 1

. (I + )[11 M2) [E Cn cos nny]2  (57)

and

9b -q -8 1 Cn sin niy + k3 E E Cm Cn sin(m+n)ivyBb=q(|M)I I I

cc CO -~ rN 2-n21
+ k5 E m+n I -(m-n)] Cm Cn sin(m-n)wy (58)

1 1 mn m-n

mn

+ E E m-n [m+n - Im-nI] Cm Cn sin(m-n)ry11m-

The zero Fourier mode proportional to K6 in equation (57) is again evident.
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V. APPLICATIONS

Numerical solutions of the Euler equations have been calculated for

two-dimensional, isentropic, sLeady duct/nozzle flow using the second-order

boundary condition procedures developed in the previous section. Second-order

boundary condition results are compared with those produced using the conven-

tional zero-order characteristic boundary conditions and also the first-order

boundary conditions developed in Reference 1.

A solution algorithm was used for the nonlinear Euler equations (1) - (3)

which is based on the method presented in Reference 2. It uses explicit time

integration to relax to steady state conditions. It should be emphasized that

the boundary condition analysis is independent of the choice of inviscid,

nonlinear solution method.

The duct/nozzle geometry is shown schematically in Figure 1. The flow is

characterized by p., the downstream pressure at infinity, which produces a

mass flow per unit area w through the duct. The linearized solutions given by

equations (34), (36), (48), (50) and (51) are assumed valid in the semi-

infinite regions I and III and the computational boundary conditions are

applied at the upstream and downstream boundaries AA and BB of the nonlinear

computational region II.

The actual shape of the duct/nozzle and the computational grid are shown

in Figure 2. The shape is identical to that used for the calculations pre-

sented in Reference 1. The nozzle contour is sinusoidal and symmetric about

the centerline. The computational grid for this portion of the nozzle had

dimensions 81 x 41, which is twice the size of that used in Reference 1. The

increased grid dimensions allowed second-order effects to be quantified more

accurately. The area ratio of the nozzle is .75 and the upstream and down-

stream areas are equal. For these constant area sections of the duct, addi-

tional rectangular grid cells could be added without altering The basic 81 x

41 grid. This served to minimize the effect of grid changes on the calcula-

tions when the computational boundaries were moved in order to assess the

accuracy of the boundary conditions.
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Because the configuration i- symmetric, calculations were limited to the

lower half of the duct and a centerline symmetry condition was used. Although

the configuration used for these calculations is simple, the boundary condi-

tion analysis of the previous section is general and applicable to unsymmetric

configurations having unequal upstream and downstream areas. Use of the

simple configuration is sufficient to demonstrate the validity of the

analysis.

The second-order upstream and downstream boundary conditions are given by

equations (56), (57) and (58). The associated analytic far field solutions

are given by equations (21), (34) and (36) for the downstream region and by

equations (48), (50) and (51) for the upsteam region. The zero-order (or

characteristic) boundary conditions consist of imposing the constant value of

Q. and a zero value of e along the upstream boundary and the constant value of

R. along the downstream boundary. The first-order upstream boundary condi-

tions consist of imposing additional distributions of Qi and 81 along the

boundary as determined from equations (20) and (40). The first-order down-

stream boundary conditions consist of imposing an additional distribution of

RI along the boundary as determined from equations (27) and (55). Additional

details are given in Reference 1.

Computational results are presented for a single value of p., but with

the computational boundaries located at two different longitudinal stations.

One boundary is sufficiently far removed so that all three sets of boundary

conditions produced essentially the same results within the computational

domain. The second boundary is extremely close to the nozzle poition of the

duct so that the relative accuracy of the various boundary conditions can then

be evaluated.

Results obtained using the complete grid shown in Figure 2 are presented

in Figures 3 and 4. This grid has 40 columns of grid cells in both the

upstream and downstream constant area portions of the duct. As mentioned

above the results were nearly identical for all three sets of boundary condi-

tions. Figure 3 shows pressure and Mach number distributions along the

centerline and lower wall of the duct/nozzle. Pressure, Mach number, and flow

angle contours are presented in Figure 4. These results serve as a reference
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for evaluating the accuracy of solutions where the computational boundaries

are moved closer to the nozzle portion of the duct.

Results for the shortened computational domain obtained using the zero-

order boundary conditions are presented in Figures 5 and 6. There was only

one column of grid cells in both the upstream and downstream constant area

portions of the duct for this case. Pressure and Mach number distributions

are shown in Figure 5 and contours are shown in Figure 6. The degradation in

the solution as a result of the boundary proximity is very evident.

Application of the first-order boundary conditions to the short computa-

tional domain gives the results shown in Figures 7 and 8. Eleven Fourier

modes were needed to accurately describe the boundary distributions of e and R

for this extremely close boundary location. Pressure and Mach number

distributions are shown in Figure 7 and contours in Figure 8. Linearized

first-order solution results obtained from equations (20), (27) and (40) have

been added upstream and downstream of the computational boundaries.

Significant improvement is provided by the first-order boundary conditions.

Some mismatch at the boundary is evident, but this can be attributed to

neglect of second-order interactions.

Finally, results for the shortened computational domain using the

second-order boundary conditions are presented in Figures 9 and 10. Eleven

Fourier modes were also used in obtaining these results. Pressure and Mach

number distributions are shown in Figure 9 and contours in Figure 10. The

results within the numerical solution portion of the domain are nearly

identical to those shown in Figures 3 and 4. Linearized second-order solution

results obtained from equations (48), (50) and (51) and from equations (21),

(34) and (36) have been added upstream and downstream of the computational

boundaries, respectively. It is evident that the linearized far field

analytic solutions provide for a smooth transition across the computational

boundary to the true far field conditions at infinity.

A more quantitative comparison between the three sets of boundary condi-

tions can be obtained by examining the distribution of flow variables along

the computational boundaries. Figure 11 shows a comparison of the distribu-
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tion of pressure and flow ,ngle along the upstream and downstream boundaries

for the short computational domain. Results at the same longitudinal loca-

tions taken from the reference numerical solution using the long grid (Figure

3) are also shown. These results exhibit classical asymptotic convergence to

the reference solution. The larger increment between the zero-order and

first-order pressure results at the upstream boundary is primarily due to the

fact that the zero-order boundary conditions impose a zero flow angle along

the boundary.

It was pointed out in Section III and also in Reference 1 that tht mean

values of the perturbations at the computational boundaries are neglected

within the first-order analysis. In Section III they were shown to appear as

second-order effects described by equations (38) and (53) evaluated at x O.

In the downstream region equation (38) indicates that the relationship

- o (T-T.) dy = - + 4 (59)
1 1 0

should hold. Likewise, from equation (53) the corresponding relation for the

upsteam region is

[r Cn] (R-R.) dy = (1 + M + (60)0 402qC3

These relations are shown in Figure 12 for P.= 0.90. The Fourier

coefficients and integrals are determined at various longitudinal upstream and

downstream locations using flowfield data taken from the reference long grid

solution of Figure 3. Distance measured from the start of the constant area

portions of the duct is denoted by t. These results confirm the second-order

nature of the perturbation mean values.
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It can be seen from equations (56), (57) and (58) that very little

additional computational effort is required to upgrade the boundary conditions

from first-order to second-order. Most of the computational effort at the

boundaries is spent determining the Fourier coefficients which are needed to

impose first-order boundary conditions. Therefore, computational boundaries

having isentropic inflow can be upgraded easily even though a source of

entropy production may exist within the nonlinear computational domain.

The results presented in Figures 3 through 12 were obtained using a very

fine computational grid in order to accurately quantify the differences

between the boundary condition models. To demonstrate that the improvement

provided by the second-order procedure can also be achieved with a moderately

sized grid, the calculations were repeated with the grid used in Reference 1.

One column of grid cells was used in both the upstream and downstream constant

area portions of the duct. These results are shown in Figures 13 and 14.

Pressure and Mach number distributions are shown in Figure 13. Distributions

of pressure and flow angle along the upstream and downstream computational

boundaries are compared in Figure 14. Note that these boundaries are located

slightly upstream and downstream, respectively, from those of the fine grid

solution. Asymptotic convergence to the reference solution (Reference 1) is

again evident. Eleven Fourier modes were needed to resolve the boundary

distributions of e and R.
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VI. SUMMARY

Highly accurate second-order far field boundary conditions for

two-dimensional, isentropic duct flow have been developed from analytic

solutions of the second-order linearized Euler equations. These boundary

conditions represent a logical extension, in an asymptotic sense, of the

first-order boundary conditions derived in Reference 1 from analytic solutions

of the first-order linearized Euler equations. The first-order boundary

conditions of Reference 1 are themselves a logical extension of the zero-order

(or characteristic) boundary conditions commonly used in numerical solutions

of the nonlinear fluid dynamic equations. The boundary conditions and

analytic solutions provide a smooth transition across a computational boundary

to the true far field conditions at infinity. The boundary procedure is

general in that it can be used in conjunction with any numerical solution

method.

The second-order linearized Euler equations are non-homogeneous and have

been solved exactly using separation of variables and Fourier analysis. This

procedure was used in Reference I to solve the linearized, homogeneous

first-order equations. Extension of the second-order analysis to allow

non-isentropic flow conditions is probably not justified because solution of

the non-isentropic equations requires an approximate two-level perturbation

procedure (see Reference I for details). However, even if the flow being

analyzed has an entropy source in the nonlinear region, the second-order

boundary conditions can still be applied at the inflow computational boundary

if the incoming flow is isentropic.

Use of zero-order (or characteristic) boundary conditions requires that

the computational boundaries be located far from the nonlinear region of the

flow. Closer placement of the boundaries may result in a significant amount

of solution degradation. The first-order boundary conditions derived in

Reference 1 allow the boundaries to be located much closer thereby reducing

the number of grid points needed for the numerical solution and also the

number of iterations for solution convergence. This leads to a significant

reduction in the amount of computational effort required for the nonlinear
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numerical solution because the additional calculations required for the

first-order boundary conditions is modest.

Use of the second-order boundary conditions allows the computational

boundary to be placed even closer with a further reduction in the number of

grid points. The amount of additional computational and implementation effort

is very slight so that isentropic inflow boundary conditions can be upgraded

with little penalty.

In Reference 1 it was pointed out that the mean values of the flow

variable perturbations at the computational boundary were not described within

the first-order analysis. It was further postulated that these mean values

represented a second-order effect. The nature of this second-order interac-

tion was clarified by the present analysis and verified by numerical results.
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